Differential Transcriptional Programs Reveal Modular Network Rearrangements Associated to Late-Onset Alzheimer’s Disease

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Alzheimer’s disease (AD) is a complex, genetically heterogeneous disorder. The diverse phenotypes associated with AD result from intricate interactions between genetic and environmental factors, influencing multiple biological pathways throughout disease progression. Network-based approaches offer a comprehensive way to assess phenotype-specific states. In this study, we calculated key network metrics to characterize the network transcriptional structure and organization in LOAD, focusing on genes and pathways implicated in AD pathology within the dorsolateral prefrontal cortex (DLPFC). Our findings revealed disease-specific coexpression markers associated with diverse metabolic functions. Additionally, significant differences were observed at both the mesoscopic and local levels between AD and control networks, along with a restructuring of gene coexpression and biological functions into distinct transcriptional modules. These results show the molecular reorganization of the transcriptional program occurring in LOAD, highlighting specific adaptations that may contribute to or result from cellular responses to pathological stressors. Our findings may support the development of a unified model for the causal mechanisms of AD, suggesting that its diverse manifestations arise from multiple pathways working together to produce the disease’s complex clinical patho-phenotype.

Article activity feed