Pregestational Stress Representing a Maternal Depression Model and Prenatally Applied Antidepressant Mirtazapine Modulate Hippocampal Excitability in the Offspring

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Maternal depression negatively affects the neurodevelopment of offspring, but its pharmacological treatment during gestation remains controversial. This study reports the consequences of maternal depression and/or prenatal antidepressant treatment with mirtazapine on offspring early neurodevelopment via an animal model of maternal depression induced by pregestational chronic unpredictable stress (CUS). Offspring from four groups were studied: nonstressed vehicle-treated dams, nonstressed mirtazapine-treated dams, stressed vehicle-treated dams, and stressed mirtazapine-treated dams. The hippocampal excitability of offspring was examined in primary hippocampal cultures established on the first postnatal day, reflecting mostly prenatal development, and in hippocampal slices prepared on postnatal days 11-13 reflecting an early postnatal development. Pregestational CUS modeling of maternal depression moderately suppressed offspring hippocampal excitability in primary cultures but facilitated it in slices. Mirtazapine administered to CUS-exposed dams partly rectified the changes observed in primary cultures of pups from untreated dams and, more prominently, in slices. Mirtazapine itself negatively affected the hippocampal excitability of nonstressed dam offspring in primary culture, and this effect was diminished in slices. Since altered hippocampal neurotransmission might be responsible, at least in part, for the neuropsychopathologies frequently observed in the offspring of depressed mothers, and mirtazapine was able partly relieve such changes, this treatment may be also beneficial during the prenatal and perinatal periods.

Article activity feed