Structure Determination of Tegoprazan((S)-4-((5,7-difluorochroman-4-yl)oxy)-N,N,2-trimethyl-1H-benzo[d]imidazole-6-formamide) Polymorphs A and B by Laboratory X-Ray Powder Diffraction

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Tegoprazan is a potassium ion-competitive acid blocker (P-CAB) and a novel inhibitor of gastric acid secretion. The compound exists in two crystalline polymorphs, A and B, whose structures had not previously been reported. In this study, both polymorphs were analyzed by liquid- and solid-state NMR, revealing identical tautomeric states. Using this information, the crystal structures were determined from laboratory powder X-ray diffraction data by simulated annealing and Rietveld refinement. Both forms were found to crystallize in the monoclinic space group P21, with Z = 4 and two independent molecules in the asymmetric unit (Z′ = 2). To assess the stability and reliability of the refined structures, we attempted geometry optimization and vibrational analysis using DFT-D methods. However, due to the high conformational complexity of Z′ = 2 systems, these calculations failed to converge or produced imaginary frequencies. Instead, single-point energy calculations were performed on the refined models. The resulting relative energy differences, together with solubility data, van’t Hoff enthalpies, and DSC profiles, consistently indicated that Polymorph A is more stable than Polymorph B. These results highlight the challenges of structure validation via DFT-D for complex molecular crystals and demonstrate the value of integrating experimental and computational approaches for polymorph characterization.

Article activity feed