Introducing the Second-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integral Equations of Volterra-Type: Mathematical Methodology and Illustrative Application to Nuclear Engineering
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This work presents the general mathematical frameworks of the “First and Second-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integral Equations of Volterra Type” designated as the 1st-FASAM-NIE-V and the 2nd-FASAM-NIE-V methodologies, respectively. Using a single large-scale (adjoint) computation, the 1st-FASAM-NIE-V enables the most efficient computation of the exact expressions of all first-order sensitivities of the decoder response to the feature functions and also with respect to the optimal values of the NIE-net’s parameters/weights after the respective NIE-Volterra-net was optimized to represent the underlying physical system. The 2nd-FASAM-NIE-V requires as many large-scale computations as there are first-order sensitivities of the decoder response with respect to the feature functions. Subsequently, the second-order sensitivities of the decoder response with respect to the primary model parameters are obtained trivially by applying the “chain-rule of differentiation” to the second-order sensitivities with respect to the feature functions. The application of the 1st-FASAM-NIE-V and the 2nd-FASAM-NIE-V methodologies is illustrated by using a well-known model for neutron slowing down in a homogeneous hydrogenous medium, which yields tractable closed-form exact explicit expressions for all quantities of interest, including the various adjoint sensitivity functions and first- and second-order sensitivities of the decoder response with respect to all feature functions and also primary model parameters.