Effect of Curing Temperature on Crack Resistance of Low-Heat Portland Cement Hydraulic Lining Concrete
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
As part of this study, mechanical property tests were carried out at different stages with different curing temperatures to elucidate the effect of temperature on the mechanical properties of concrete. The curing temperatures were laboratory curing temperature (standard curing at 20 °C) and variable temperature curing (simulated site ambient temperature curing) according to the actual temperature of previous construction sites. The compressive strength, split tensile strength, axial tensile strength, and modulus of elasticity values were tested, and the growth rates were calculated. According to previous experiments, the maturity indexes under two kinds of maintenance conditions were calculated based on the N-S maturity formula, F-P equivalent age calculation formula, and D-L equivalent age calculation formula proposed by the maturity theory. Moreover, logarithmic function, exponential function, and hyperbolic function fitting were carried out using the fitting software to study the developmental relationship between strength and maturity. The physical phase analysis of low-heat cement was performed using XRD and simultaneous thermal analysis, and pore structure analysis was conducted using the mercuric pressure method (MIP). We also conducted an SEM analysis of hydration products and the micromorphology of low-heat cement with 25% fly ash. Energetic spectroscopy analyzed the elemental content. In this study, it was found that temperature has a significant effect on the mechanical properties of concrete, with temperature having the greatest effect on splitting tensile strength. The strength of low-heat silicate cement concrete increases with maturity. The highest correlation coefficient was based on the hyperbolic function fit in the F-P equivalent age. The improved development of concrete strength in the later stages of the two curing conditions in this test indicates that low-heat cement is suitable for use in hydraulic tunnels. The low-heat cement generates a large number of C-S-H gels via C2S in the late stage, filling the internal pores, strengthening the concrete densification to make the structure more stable, guaranteeing the late development of concrete strength, and imparting a micro-expansive effect, which is effective for long-term crack resistance in hydraulic lining structures.