Enhancing EEG-Based Emotion Detection with Hybrid Models: Insights from DEAP Dataset Applications
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Emotion detection using electroencephalogram (EEG) signals is a rapidly evolving field with significant applications in mental health diagnostics, affective computing, and human–computer interaction. However, existing approaches often face challenges related to accuracy, interpretability, and real-time feasibility. This study leverages the DEAP dataset to explore and evaluate various machine learning and deep learning techniques for emotion recognition, aiming to address these challenges. To ensure reproducibility, we have made our code publicly available. Extensive experimentation was conducted using K-Nearest Neighbors (KNN), Support Vector Machines (SVMs), Decision Tree (DT), Random Forest (RF), Bidirectional Long Short-Term Memory (BiLSTM), Gated Recurrent Units (GRUs), Convolutional Neural Networks (CNNs), autoencoders, and transformers. Our hybrid approach achieved a peak accuracy of 85–95%, demonstrating the potential of advanced neural architectures in decoding emotional states from EEG signals. While this accuracy is slightly lower than some state-of-the-art methods, our approach offers advantages in computational efficiency and real-time applicability, making it suitable for practical deployment. Furthermore, we employed SHapley Additive exPlanations (SHAP) to enhance model interpretability, offering deeper insights into the contribution of individual features to classification decisions. A comparative analysis with existing methods highlights the novelty and advantages of our approach, particularly in terms of accuracy, interpretability, and computational efficiency. A key contribution of this study is the development of a real-time emotion detection system, which enables instantaneous classification of emotional states from EEG signals. We provide a detailed analysis of its computational efficiency and compare it with existing methods, demonstrating its feasibility for real-world applications. Our findings highlight the effectiveness of hybrid deep learning models in improving accuracy, interpretability, and real-time processing capabilities. These contributions have significant implications for applications in neurofeedback, mental health monitoring, and affective computing. Future work will focus on expanding the dataset, testing the system on a larger and more diverse participant pool, and further optimizing the system for broader clinical and industrial applications.