Assessment of the Effects and Contributions of Natural and Human Factors on the Nutrient Status of Typical Lakes and Reservoirs in the Yangtze River Basin
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study investigated the relative contributions of natural and anthropogenic factors to the nutrient status of 33 representative lakes and reservoirs in the Yangtze River Basin. Using national water quality monitoring data, remote sensing imagery, GIS, the InVEST model, and RDA, we analyzed the Spatiotemporal differences of total nitrogen (TN), total phosphorus (TP), the ratio of TN to TP (TN/TP), trophic level index (TLI), and habitat quality (HQ). Results revealed significant spatial heterogeneity in lake nutrient status, with upstream reservoirs exhibiting better water quality than their midstream and downstream counterparts. Over time, there is a decreasing trend in nutrient loads in lakes and reservoirs, yet the risk of eutrophication remains high. The middle and lower reaches of lakes and reservoirs face more severe eutrophication pressure. The contribution rates of natural factors and human activities to TN and TP in lakes and reservoirs are 19.1% and 35.0%, respectively. The main driving factors are livestock and poultry breeding volume, habitat quality, and urbanization, with contribution rates of 13.0%, 9.8%, and 0.2%, respectively. The contribution rates of natural factors and human activities to TN/TP and TLI of lakes and reservoirs are 19.8% and 15.5%, respectively. Actual Evapotranspiration (7.8%), habitat quality (7.3%), and hydraulic retention time (3.1%) were key drivers for the shifts of TN/TP and TLI. Management strategies should therefore control agricultural nitrogen fertilizer inputs upstream, industrial and agricultural non-point source pollution in the midstream, and enhanced wastewater treatment alongside population density and economic development control in the downstream areas. This research provides a crucial scientific basis for the ecological environment protection and sustainable utilization of water resources in the Yangtze River Basin.