Effects of Diverse Acrylates on the Electro-Optical Performance of Polymer-Dispersed Liquid Crystal Films

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study investigated the influence of different functional groups on the electro-optical properties of polymer-dispersed liquid crystal (PDLC) films. Twelve acrylate monomers with functional groups like amino, halogen, and double-bond were introduced into PDLC films, and twelve samples were prepared. The electro-optical properties and microstructure of the films were characterized. The results show that compared to films with amino and halogen groups, those with hydroxyl groups have the best balance of driving voltage and contrast, achieving higher contrast at lower driving voltage, making this preparation scheme ideal for low-voltage, high-contrast PDLC films. Also, in the presence of hydroxyl groups, introducing double bonds increases saturation voltage and decreases saturation. Hydrogen-bond engineering through strategically positioned hydroxyl groups in acrylate monomers optimizes PDLC performance by enabling compact polymer networks and controlled phase separation, achieving superior contrast ratios (163) and low saturation voltages (15.8 V), while amino groups induce steric limitations and dual-bond systems that disrupt hydrogen-bond efficacy, highlighting hydroxyl spatial design as critical for electro-optical optimization.

Article activity feed