Noncommutative Maccone-Pati Uncertainty Principles

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Let $\mathcal{E}$ be a Hilbert C*-module over a unital C*-algebra $\mathcal{A}$. Let $A: \mathcal{D}(A) \subseteq \mathcal{E} \to \mathcal{E}$ and $B: \mathcal{D}(B)\subseteq \mathcal{E}\to \mathcal{E}$ be possibly unbounded self-adjoint morphisms. Then for all $x \in \mathcal{D}(AB)\cap \mathcal{D}(BA)$ with $\langle x, x \rangle =1$, we show that \begin{align*} (1) \quad\quad\quad d_x(A)^2+d_x(B)^2&\geq \mp \langle \{A,B\}x, x \rangle +\langle (A\pm B)x, y \rangle\langle y, (A\pm B)x \rangle\pm \{\langle Ax, x \rangle, \langle Bx, x \rangle\}, \\ &\quad \forall y \in \mathcal{E} \text{ satisfying } \|y\|\leq 1 \text{ and } \langle x,y \rangle =0 \end{align*} \begin{align*} (2) \quad \quad \quad d_x(A)^2+d_x(B)^2&\geq \mp i\langle [A,B]x, x \rangle +\langle (A\pm iB)x, y \rangle\langle y, (A\pm iB)x \rangle \mp i[\langle Ax, x \rangle, \langle Bx, x \rangle], \\ &\quad \forall y \in \mathcal{E} \text{ satisfying } \|y\|\leq 1 \text{ and } \langle x,y \rangle =0. \end{align*} where \begin{align*} & d_x(A)\coloneqq \sqrt{\langle Ax, Ax \rangle -\langle Ax, x \rangle^2},\quad [A,B] \coloneqq AB-BA, \\ & [\langle Ax, x \rangle,\langle Bx, x \rangle]\coloneqq \langle Ax, x \rangle\langle Bx, x \rangle -\langle Bx, x \rangle\langle Ax, x \rangle. \end{align*} We call Inequalities (1) and (2) as noncommutative Maccone-Pati uncertainty principles. They reduce to uncertainty principles derived by Maccone and Pati [\textit{Phys. Rev. Lett., 2014}] whenever $\mathcal{A}=\mathbb{C}$.

Article activity feed