Noncommutative Heisenberg-Robertson-Schrodinger Uncertainty Principles

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Let $\mathcal{E}$ be a Hilbert C*-module over a unital C*-algebra $\mathcal{A}$. Let $A: \mathcal{D}(A) \subseteq \mathcal{E} \to \mathcal{E}$ and $B: \mathcal{D}(B)\subseteq \mathcal{E}\to \mathcal{E}$ be possibly unbounded self-adjoint morphisms. Then for all $x \in \mathcal{D}(AB)\cap \mathcal{D}(BA)$ with $\langle x, x \rangle =1$, we show that \begin{align*} (1) \quad \Delta _x(B)^2d_x(A)^2+\Delta _x(A)^2d_x(B)^2\geq \frac{(\langle \{A,B\}x, x \rangle -\{\langle Ax, x \rangle,\langle Bx, x \rangle\})^2-(\langle [A,B]x, x \rangle +[\langle Ax, x \rangle,\langle Bx, x \rangle])^2}{2} \end{align*} and \begin{align*} (2) \quad \Delta _x(A)\Delta _x(B)\geq \frac{\sqrt{\|(\langle \{A,B\}x, x \rangle -\{\langle Ax, x \rangle,\langle Bx, x \rangle\})^2-(\langle [A,B]x, x \rangle +[\langle Ax, x \rangle,\langle Bx, x \rangle])^2\|}}{2}, \end{align*} where \begin{align*} &\Delta _x(A)\coloneqq \|Ax-\langle Ax, x \rangle x \|, \quad d_x(A)\coloneqq \sqrt{\langle Ax, Ax \rangle -\langle Ax, x \rangle^2},\\ &[A,B] \coloneqq AB-BA, \quad \{A,B\}\coloneqq AB+BA, \\ & \{\langle Ax, x \rangle,\langle Bx, x \rangle\}\coloneqq \langle Ax, x \rangle\langle Bx, x \rangle +\langle Bx, x \rangle\langle Ax, x \rangle, \\ & [\langle Ax, x \rangle,\langle Bx, x \rangle]\coloneqq \langle Ax, x \rangle\langle Bx, x \rangle -\langle Bx, x \rangle\langle Ax, x \rangle. \end{align*} We call Inequalities (1) and (2) as noncommutative Heisenberg-Robertson-Schrodinger uncertainty principles. They reduce to the Heisenberg-Robertson-Schrodinger uncertainty principle (derived by Schrodinger in 1930) whenever $\mathcal{A}=\mathbb{C}$.

Article activity feed