β2-Chimaerin Deficiency Favors Polyp Growth in the Colon of Apc<sup>Min/+</sup> Mice
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
A Rho-GTPases are pivotal regulators of key cellular processes implicated in colorectal cancer (CRC) progression, yet the roles of their regulatory proteins, particularly GTPase-activating proteins (GAPs), remain poorly understood. This study focuses on β2-chimaerin, a Rac1-specific GAP, in Apc-driven tumorigenesis using the ApcMin/+ mouse model. We demonstrate that β2-chimaerin deficiency selectively promotes the growth of colonic polyps without influencing small intestinal polyp formation. Mechanistically, β2-chimaerin loss is associated with enhanced ERK phosphorylation, while canonical Wnt/β-catenin and E-cadherin pathways remain unaffected, suggesting its specific involvement in modulating proliferative signaling in the colon. Consistent with its tumor-suppressive role, bioinformatics analyses reveal that low β2-chimaerin expression correlates with poor prognosis in CRC patients. This study expands the understanding of Rho-GTPase regulatory mechanisms in intestinal tumorigenesis, providing a basis for future therapeutic strategies targeting Rho-GTPase pathways in CRC.