The Dual Role of cGAS-STING Signaling in COVID-19: Implications for Therapy

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The progression of COVID-19 involves a sophisticated and intricate interplay between the SARS-CoV-2 virus and the host’s immune response. The immune system employs both innate and adaptive mechanisms to combat infection. Innate immunity initiates the release of interferons (IFNs) and pro-inflammatory cytokines, while the adaptive immune response involves CD4+ Th lymphocytes, B lymphocytes, and CD8+ Tc cells. Pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPS) and damage-associated molecular patterns (DAMPs), activating the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, a crucial component of the innate immune response to SARS-CoV-2. This pathway fulfills a dual function during infection. In the early phase of infection, the virus can suppress cGAS-STING signaling to avoid immune detection. However, in the late stages, the activation of this pathway may trigger excessive inflammation and tissue damage, exacerbating disease severity. Modulating the cGAS-STING pathway, whether through agonists like dimeric amidobenzimidazole (diABZI) or inhibitors targeting viral proteins, such as 3CLpro, for example, offers a promising approach for personalized therapy to control the immune response and mitigate severe inflammation, ultimately improving clinical outcomes in patients with severe COVID-19.

Article activity feed