Transfinite Patches for Isogeometric Analysis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This paper extends the well-known transfinite interpolation formula, which was developed in the late 1960s by the applied mathematician William Gordon at the premises of General Motors as an extension of the pre-existing Coons interpolation formula. Here, a conjecture is formulated, which claims that the meaning of the involved blending functions can be enhanced, such that it includes any linear independent and complete set of functions, including piecewise-linear, trigonometric functions, Bernstein polynomials, B-splines, and NURBS, among others. In this sense, NURBS-based isogeometric analysis and aspects of T-splines may be considered as special cases. Applications are provided to illustrate the accuracy in the interpolation through the L2 error norm of closed-formed functions prescribed at the nodal points of the transfinite patch, which represent the solution of partial differential equations under boundary conditions of the Dirichlet type.