The Glass Transition: A Topological Perspective

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Resorting to microcanonical ensemble Monte Carlo simulations, we study the geometric and topological properties of the state space of a model of a network glass-former. This model, a Lennard-Jones binary mixture, does not crystallize due to frustration. We have found two peaks in specific heat at equilibrium and at low energy, corresponding to important changes in local ordering. These singularities were accompanied by inflection points in geometrical markers of the potential energy level sets—namely, the mean curvature, the dispersion of the principal curvatures, and the variance of the scalar curvature. Pinkall’s and Overholt’s theorems closely relate these quantities to the topological properties of the accessible state-space manifold. Thus, our analysis provides strong indications that the glass transition is associated with major changes in the topology of the energy level sets. This important result suggests that this phase transition can be understood through the topological theory of phase transitions.

Article activity feed