Unveiling the Fifth Dimension: A Novel Approach to Quantum Mechanics
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Quantum mechanics (QM) has long challenged our understanding of time, space, and reality, with phenomena such as superposition, wave–particle duality, and quantum entanglement defying classical notions of causality and locality. Despite the predictive success of QM, its interpretations—such as the Copenhagen and many-worlds interpretations—remain contentious and incomplete. This paper introduces Strip Theory, a novel framework that reconceptualises time as a two-dimensional manifold comprising foretime, the sequential dimension, and sidetime, an orthogonal possibility dimension representing parallel quantum outcomes. By incorporating sidetime, the theory provides a unified explanation for quantum superposition, coherence, and interference, resolving ambiguities associated with wavefunction collapse. The methods involve extending the mathematical formalism of QM into a five-dimensional framework, where sidetime is explicitly encoded alongside spatial and sequential temporal dimensions. The principal findings demonstrate that this model reproduces all measurable results of QM while addressing foundational issues, offering a clearer and more deterministic interpretation of quantum phenomena. Furthermore, the framework provides insights into quantum coherence, wave–particle duality, and the philosophical implications of free will. These results suggest that Strip Theory can serve as a bridge between interpretations and provide a deeper understanding of time and reality, advancing both theoretical and conceptual horizons.