Brute Force Computations and Reference Solutions
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In this paper, we consider the application of brute force computational techniques (BFCTs) for solving computational problems in mathematical analysis and matrix algebra in a floating-point computing environment. These techniques include, among others, simple matrix computations and the analysis of graphs of functions. Since BFCTs are based on matrix calculations, the program system MATLAB® is suitable for their computer realization. The computations in this paper are completed in double precision floating-point arithmetic, obeying the 2019 IEEE Standard for binary floating-point calculations. One of the aims of this paper is to analyze cases where popular algorithms and software fail to produce correct answers, failing to alert the user. In real-time control applications, this may have catastrophic consequences with heavy material damage and human casualties. It is known, or suspected, that a number of man-made catastrophes such as the Dharhan accident (1991), Ariane 5 launch failure (1996), Boeing 737 Max tragedies (2018, 2019) and others are due to errors in the computer software and hardware. Another application of BFCTs is finding good initial guesses for known computational algorithms. Sometimes, simple and relatively fast BFCTs are useful tools in solving computational problems correctly and in real time. Among particular problems considered are the genuine addition of machine numbers, numerically stable computations, finding minimums of arrays, the minimization of functions, solving finite equations, integration and differentiation, computing condensed and canonical forms of matrices and clarifying the concepts of the least squares method in the light of the conflict remainders vs. errors. Usually, BFCTs are applied under the user’s supervision, which is not possible in the automatic implementation of computational methods. To implement BFCTs automatically is a challenging problem in the area of artificial intelligence and of mathematical artificial intelligence in particular. BFCTs allow to reveal the underlying arithmetic in the performance of computational algorithms. Last but not least, this paper has tutorial value, as computational algorithms and mathematical software are often taught without considering the properties of computational algorithms and machine arithmetic.