Obtaining and Characterizing Poly(Acid Acrylic–co-Acrylamide) Hydrogels Reinforced with Cellulose Nanocrystals from Acacia farnesiana L. Willd (Huizache)
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In this work, cellulose nanocrystals (CNCs) were obtained from the wood of Acacia farnesiana L. Willd (Huizache) via acid hydrolysis; then, they were used to reinforce polyacrylic acid–co-acrylamide (AAc/AAm) hydrogels synthesized in a solution process via in situ free radical photopolymerization. The nanomaterials were characterized using atomic force microscopy, dynamic light scattering (DLS), and the residual charge on the CNCs; the nanohydrogels were characterized using infrared spectroscopy, scanning electron microscopy, swelling kinetics, and Young’s modulus. Soluble-grade cellulose presented 94.6% α-cellulose, 0.5% β-cellulose, and 2.7% γ-cellulose, as well as a viscosity of 8.25 cp and a degree of polymerization (DP) of 706. The CNCs averaged 180 nm in length and 20 nm in width. In the nanohydrogels, it was observed that the swelling kinetic behavior followed the Schott kinetic model, at times lower than 500 h; after that, it became linear. The results show that the hydrogel swelling capacity depended on the crosslinking agent and CNC concentration, as well as the CNC chemical and morphological properties, rather than the CNC source. The hydrogels with CNCs exhibited a decreased swelling degree compared to the hydrogels without CNCs. Young’s modulus increased with CNC presence and depended on the concentration and characteristics of the CNC as a crosslinking agent.