A Robust and Comprehensive Study of the Molecular and Genetic Basis of Neurodevelopmental Delay in a Sample of 3244 Patients, Evaluated by Exome Analysis in a Latin Population

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background and Objectives: Neurodevelopmental disorders (NDDs), including developmental delay (DD), autism spectrum disorder (ASD), intellectual disability (ID), attention-deficit/hyperactivity disorder (ADHD), and specific learning disorders, affect 15% of children and adolescents worldwide. Advances in next-generation sequencing, particularly whole exome sequencing (WES), have improved the understanding of NDD genetics. Methodology: This study analyzed 3244 patients undergoing WES (single, duo, trio analyses), with 1028 meeting inclusion criteria (67% male; age 0–50 years). Results: Pathogenic (P) or likely pathogenic (LP) variants were identified in 190 patients, achieving a diagnostic yield of 13.4% (singleton), 14% (duo), and 21.2% (trio). A total of 207 P/LP variants were identified in NDD-associated genes: 38% were missense (48 de novo), 29% frameshift (26 de novo), 21% nonsense (14 de novo), 11% splicing site (14 de novo), and 1% inframe (1 de novo). De novo variants accounted for 49.8% of cases, with 87 novel de novo variants and 27 novel non-de novo variants unreported in databases like ClinVar or scientific literature. Conclusions: This is the largest study on WES in Colombian children with NDDs and one of the largest in Latino populations. It highlights WES as a cost-effective first-tier diagnostic tool in low-income settings, reducing diagnostic timelines and improving clinical care. These findings underscore the feasibility of implementing WES in underserved populations and contribute significantly to understanding NDD genetics, identifying novel variants with potential for further research and clinical applications.

Article activity feed