Seizures Triggered by Systemic Administration of 4-Aminopyridine in Rats Lead to Acute Brain Glucose Hypometabolism, as Assessed by [18F]FDG PET Neuroimaging

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

4-aminopyridine (4-AP) is a non-selective blocker of voltage-dependent K+ channels used to improve walking in multiple sclerosis patients, and it may be useful in the treatment of cerebellar diseases. In animal models, 4-AP is used as a convulsant agent. When administered intrahippocampally, 4-AP induces acute local glucose hypermetabolism and significant brain damage, while i.p. administration causes less neuronal damage. This study aimed to investigate the effects of a single i.p. administration of 4-AP on acute brain glucose metabolism as well as on neuronal viability and signs of neuroinflammation 3 days after the insult. Brain glucose metabolism was evaluated by [18F]FDG PET neuroimaging. [18F]FDG uptake was analyzed based on volumes of interest (VOIs) as well as by voxel-based (SPM) analyses. The results showed that independently of the type of data analysis used (VOIs or SPM), 4-AP induced acute generalized brain glucose hypometabolism, except in the cerebellum. Furthermore, the SPM analysis normalized by the whole brain uptake revealed a significant cerebellar hypermetabolism. The neurohistochemical assays showed that 4-AP induced hippocampal astrocyte reactivity 3 days after the insult, without inducing changes in neuronal integrity or microglia-mediated neuroinflammation. Thus, acute brain glucose metabolic and neuroinflammatory profiles in response to i.p. 4-AP clearly differed from that reported for intrahippocampal administration. Finally, the results suggest that the cerebellum might be more resilient to the 4-AP-induced hypometabolism.

Article activity feed