Impact of Wetting-Drying Cycles on Soil Intra-Aggregate Pore Architecture Under Different Management Systems

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In many soil processes, including solute and gas dynamics, the architecture of intra-aggregate pores is a crucial component. Soil management practices and wetting-drying (W-D) cycles, the latter having a significant impact on pore aggregation, are two key factors that shape pore structure. This study examines the effects of W-D cycles on the architecture of intra-aggregate pores under three different soil management systems: no-tillage (NT), minimum tillage (MT), and conventional tillage (CT). The soil samples were subjected to 0 and 12 W-D cycles, and the resulting pore structures were scanned using X-ray micro-computed tomography, generating reconstructed 3D volumetric data. The data analyses were conducted in terms of multifractal spectra, normalized Shannon entropy, lacunarity, porosity, anisotropy, connectivity, and tortuosity. The multifractal parameters of capacity, correlation, and information dimensions showed mean values of approximately 2.77, 2.75, and 2.75 when considering the different management practices and W-D cycles; 3D lacunarity decreased mainly for the smallest boxes between 0 and 12 W-D cycles for CT and NT, with the opposite behavior for MT. The normalized 3D Shannon entropy showed differences of less than 2% before and after the W-D cycles for MT and NT, with differences of 5% for CT. The imaged porosity showed reductions of approximately 50% after 12 W-D cycles for CT and NT. Generally, the largest pores (>0.1 mm3) contributed the most to porosity for all management practices before and after W-D cycles. Anisotropy increased by 9% and 2% for MT and CT after the cycles and decreased by 23% for NT. Pore connectivity showed a downward trend after 12 W-D cycles for CT and NT. Regarding the pore shape, the greatest contribution to porosity and number of pores was due to triaxial-shaped pores for both 0 and 12 W-D cycles for all management practices. The results demonstrate that, within the resolution limits of the microtomography analysis, pore architecture remained resilient to changes, despite some observable trends in specific parameters.

Article activity feed