m-QAM Receiver Based on Data Stream Spectral Clustering for Optical Channels Dominated by Nonlinear Phase Noise

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Optical communication systems face challenges like nonlinear noises, particularly Kerr-induced phase noise, which worsens with higher-order m-QAM formats due to their dense data-symbol sets. Advanced signal processing, including machine learning, is increasingly used to enhance signal integrity during demodulation. This paper explores the application of a spectral clustering algorithm adapted to deal with data streaming to mitigate nonlinear noise in long-haul optical channels dominated by nonlinear phase noise, offering a promising solution to a pressing issue. The spectral clustering algorithm was adapted to handle data streams, enabling potential real-time applications. Additionally, it was combined with a demapping process for m-QAM to resolve labeling inconsistencies when processing windowed data. We demonstrate that the spectral clustering algorithm outperforms the k-means algorithm in the face of nonlinear phase noise in −90, −100, and −110 dBc/Hz scenarios at 1 MHz in a simulated 10 GHz symbol rate channel.

Article activity feed