In-Context Learning in Large Language Models: A Comprehensive Survey

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This survey provides a comprehensive overview of in-context learning (ICL) in large language models (LLMs), a phenomenon where models can adapt to new tasks without parameter updates by leveraging task-relevant information within the input context. We explore the definition and mechanisms of ICL, investigate the factors contributing to its emergence, and discuss strategies for optimizing and effectively utilizing ICL in various applications. Through a systematic review of recent literature, we first clarify what ICL is, distinguishing it from traditional fine-tuning approaches and highlighting its unique characteristics. We then delve into the underlying causes of ICL, examining theories ranging from implicit meta-learning during pre-training to the emergence of task vectors in LLMs. The survey also covers various approaches to enhance ICL performance, including prompt engineering techniques, demonstration selection strategies, and methods for improving generalization across diverse tasks. Additionally, we discuss the limitations and challenges of ICL, such as its sensitivity to demonstration ordering and potential biases. By synthesizing findings from numerous studies, we aim to provide researchers and practitioners with a clear understanding of the current state of ICL research, its practical implications, and promising directions for future investigation. This survey serves as a valuable resource for those seeking to leverage ICL capabilities in LLMs and contributes to the ongoing discourse on the remarkable adaptability of these models.

Article activity feed