Rheological and Mechanical Characterization of Self-Compacting Concrete Using Recycled Aggregate
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Glass and ceramics have a fundamental and crucial role in our lives due to their properties and aesthetic decoration. However, they create serious environmental problems, mainly due to their high occupation of landfills and harmful emissions. Both wastes could be utilized to reduce the natural resources’ adverse environmental effects and exhaustion. With increasing environmental concerns to reduce solid waste as much as possible, the concrete industry has adopted several methods to achieve this goal. Hence, this study examines the performance of self-compacted concrete (SCC) utilizing various percentages of recycled waste materials such as those deposited from glass and ceramic industries. The idea of utilizing recycled waste materials in concrete manufacturing has gained massive attention due to their impressive results in rheological and mechanical states. Recycled glass (RG) and ceramic waste powder (CWP) were utilized to replace fine aggregate and cement, respectively. Five mixes were designed, including the control mix, and the other four mixes had different dosages of RG and CWP as fine aggregate and cement replacement ranging between 5 and 25%. Mixes were tested for both rheological and mechanical properties to evaluate their compliance with SCC requirements as per codes and guidelines. The results revealed that 20% CWP or less as cement replacement and 10% or less of RG as a fine aggregate replacement would provide suitable rheological properties along with mechanical ones. Utilizing recycled glass and ceramic waste powder provides strength similar to the mix designed with natural resources, which helps us keep structures economically and environmentally friendly.