A Dual and Rapid RPA-CRISPR/Cas12a Method for Simultaneous Detection of Cattle and Soybean-Derived Adulteration in Goat Milk Powder
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The adulteration of goat milk powder occurs frequently; cattle-derived and soybean-derived ingredients are common adulterants in goat milk powder. However, simultaneously and rapidly detecting cattle-derived and soybean-derived components is still a challenge. An efficient, high-throughput screening method for adulteration detection is needed. In this study, a rapid method was developed to detect the adulteration of common cattle-derived and soybean-derived components simultaneously in goat milk powder by combining the CRISPR/Cas12a system with recombinant polymerase amplification (RPA). A dual DNA extraction method was employed. Primers and crRNA for dual detection were designed and screened, and a series of condition optimizations were carried out in this experiment. The optimized assay rapidly detected cattle-derived and soybean-derived components in 40 min. The detection limits of both cattle-derived and soybean-derived components were 1% (w/w) for the mixed adulteration models. The established method was applied to a blind survey of 55 commercially available goat milk powder products. The results revealed that 36.36% of the samples contained cattle-derived or soybean-derived ingredients, which revealed the noticeable adulteration situation in the goat milk powder market. This study realized a fast flow of dual extraction, dual amplification, and dual detection of cattle-derived and soybean-derived components in goat milk powder for the first time. The method developed can be used for high-throughput and high-efficiency on-site primary screening of goat milk powder adulterants, and provides a technical reference for combating food adulteration.