Spatiotemporal Graph Autoencoder Network for Skeleton-Based Human Action Recognition

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Human action recognition (HAR) based on skeleton data is a challenging yet crucial task due to its wide-ranging applications, including patient monitoring, security surveillance, and human- machine interaction. Although numerous algorithms have been proposed to distinguish between various activities, most practical applications require highly accurate detection of specific actions. In this study, we propose a novel, highly accurate spatiotemporal graph autoencoder network for HAR, designated as GA-GCN. Furthermore, an extensive investigation was conducted employing diverse modalities. To this end, a spatiotemporal graph autoencoder was constructed to automatically learn both spatial and temporal patterns from skeleton data. The proposed method achieved accuracies of 92.3% and 96.8% on the NTU RGB+D dataset for cross-subject and cross-view evaluations, respectively. On the more challenging NTU RGB+D 120 dataset, GA-GCN attained accuracies of 88.8% and 90.4% for cross-subject and cross-set evaluations. Overall, our model outperforms the majority of the existing state-of-the-art methods on these common benchmark datasets.

Article activity feed