A Proof of the Riemann Hypothesis Based on a New Expression of ξ(s)

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The Riemann Hypothesis (RH) is proved based on a new expression of the completed zeta function ξ(s), which was obtained through pairing the conjugate zero ρρi​ and ρi‾​​ in the Hadamard product, with consideration of zero multiplicity, i.e. \( \xi(s)=\xi(0)\prod_{\rho}(1-\frac{s}{\rho})=\xi(0)\prod_{i=1}^{\infty}(1-\frac{s}{\rho_i})(1-\frac{s}{\bar{\rho}_i})=\xi(0)\prod_{i=1}^{\infty}\Big{(}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}+\frac{(s-\alpha_i)^2}{\alpha_i^2+\beta_i^2}\Big{)}^{m_{i}} \), wheree \( \xi(0)=\frac{1}{2} \), \( \rho_i=\alpha_i+j\beta_i \), \( \bar{\rho}_i=\alpha_i-j\beta_i \), with \( 0<\alpha_i<1, \beta_i\neq 0, 0<|\beta_1|\leq|\beta_2|\leq \cdots \), and \( m_i ≥ 1 \) is the multiplicity of \( \rho_i \)​. Then, according to the functional equation \( \xi(s)=\xi(1-s) \), we obtain \( \prod_{i=1}^{\infty}\Big{(}1+\frac{(s-\alpha_i)^2}{\beta_i^2}\Big{)}^{m_{i}}=\prod_{i=1}^{\infty}\Big{(}1+\frac{(1-s-\alpha_i)^2}{\beta_i^2}\Big{)}^{m_{i}} \), which, owing to the divisibility of entire function, uniqueness of $m_i$, and the irreducibility of each polynomial factor, is finally equivalent to \( \alpha_i=\frac{1}{2}, 0<|\beta_1|<|\beta_2|<|\beta_3|<\cdots, i=1, 2, 3, \dots \) Thus, we conclude that the Riemann Hypothesis is true.

Article activity feed