Using a population-based Kalman estimator to model the COVID-19 epidemic in France: estimating associations between disease transmission and non-pharmaceutical interventions
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
In response to the COVID-19 pandemic caused by SARS-CoV-2, governments have adopted a wide range of non-pharmaceutical interventions (NPI). These include stringent measures such as strict lockdowns, closing schools, bars and restaurants, curfews, and barrier gestures such as mask-wearing and social distancing. Deciphering the effectiveness of each NPI is critical to responding to future waves and outbreaks. To this end, we first develop a dynamic model of the French COVID-19 epidemics over a one-year period. We rely on a global extended Susceptible-Infectious-Recovered (SIR) mechanistic model of infection that includes a dynamic transmission rate over time. Multilevel data across French regions are integrated using random effects on the parameters of the mechanistic model, boosting statistical power by multiplying integrated observation series. We estimate the parameters using a new population-based statistical approach based on a Kalman filter, used for the first time in analysing real-world data. We then fit the estimated time-varying transmission rate using a regression model that depends on the NPIs while accounting for vaccination coverage, the occurrence of variants of concern (VoC), and seasonal weather conditions. We show that all NPIs considered have an independent significant association with transmission rates. In addition, we show a strong association between weather conditions that reduces transmission in summer, and we also estimate increased transmissibility of VoC.
Article activity feed
-
-
-
SciScore for 10.1101/2021.07.09.21260259: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank…
SciScore for 10.1101/2021.07.09.21260259: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-
-
-