Operationalizing a routine wastewater monitoring laboratory for SARS-CoV-2

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Wastewater-based testing for SARS-CoV-2 is a novel tool for public health monitoring, but additional laboratory capacity is needed to provide routine monitoring at all locations where it has the potential to be useful. Few standardization practices for SARS-CoV-2 wastewater analysis currently exist, and quality assurance/quality control procedures may vary across laboratories. Alongside counterparts at many academic institutions, we built out a laboratory for routine monitoring of wastewater at the University of California, Berkeley. Here, we detail our group’s establishment of a wastewater testing laboratory including standard operating procedures, laboratory buildout and workflow, and a quality assurance plan. We present a complete data analysis pipeline and quality scoring framework and discuss the data reporting process. We hope that this information will aid others at research institutions, public health departments, and wastewater agencies in developing programs to support wastewater monitoring for public health decision-making.

Article activity feed

  1. SciScore for 10.1101/2021.06.06.21258431: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.