A dynamic transmission model for assessing the impact of pneumococcal vaccination in the United States

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Streptococcus pneumoniae (SP) is a bacterial pathogen that kills more than 300,000 children every year across the globe. Multiple vaccines exist that prevent pneumococcal disease, with each vaccine covering a variable number of the more than 100 known serotypes. Due to the high effectiveness of these vaccines, each new pneumococcal conjugate vaccine (PCV) introduction has resulted in a decrease in vaccine-type disease and a shift in the serotype distribution towards non-vaccine types in a phenomenon called serotype replacement. Here, an age-structured compartmental model was created that reproduced historical carriage transmission dynamics in the United States and was used to evaluate the population-level impact of new vaccine introductions into the pediatric population. The model incorporates co-colonization and serotype competition, which drives replacement of the vaccine types by the non-vaccine types. The model was calibrated to historical age- and serotype-specific invasive pneumococcal disease (IPD) data from the United States. Vaccine-specific coverage and effectiveness were integrated in accordance with the recommended timelines for each age group. Demographic parameters were derived from US-population-specific databases, while population mixing patterns were informed by US-specific published literature on age-group based mixing matrices. The calibrated model was then used to project the epidemiological impact of PCV15, a 15-valent pneumococcal vaccine, compared with the status quo vaccination with PCV13 and demonstrated the value of added serotypes in PCV15. Projections revealed that PCV15 would reduce IPD incidence by 6.04% (range: 6.01% to 6.06%) over 10 years when compared to PCV13.

Article activity feed