Validation of reduced S-gene target performance and failure for rapid surveillance of SARS-CoV-2 variants

This article has been Reviewed by the following groups

Read the full article

Abstract

SARS-CoV-2, the virus that causes COVID-19, has many variants capable of rapid transmission causing serious illness. Timely surveillance of new variants is essential for an effective public health response. Ensuring availability and access to diagnostic and molecular testing is key to this type of surveillance. This study utilized reverse transcription polymerase chain reaction (RT-PCR) and whole genome sequencing results from COVID-19-positive patient samples obtained through a collaboration between Aegis Sciences Corporation and Walgreens Pharmacy that has conducted more than 8.5 million COVID-19 tests at ~5,200 locations across the United States and Puerto Rico. Viral evolution of SARS-CoV-2 can lead to mutations in the S-gene that cause reduced or failed S-gene amplification in diagnostic PCR tests. These anomalies, labeled reduced S-gene target performance (rSGTP) and S-gene target failure (SGTF), are characteristic of variants carrying the del69-70 mutation, such as Alpha and Omicron (B.1.1.529, BA.1, and BA.1.1) lineages. This observation has been validated by whole genome sequencing and can provide presumptive lineage data following completion of diagnostic PCR testing in 24–48 hours from collection. Active surveillance of trends in PCR and sequencing results is key to the identification of changes in viral transmission and emerging variants. This study shows that rSGTP and SGTF can be utilized for near real-time tracking and surveillance of SARS-CoV-2 variants, and is superior to the use of SGTF alone due to the significant proportion of Alpha and Omicron (B.1.1.529, BA.1, and BA.1.1) lineages known to carry the del69-70 mutation and observed to have S-gene amplification. Adopting new tools and techniques to both diagnose acute infections and expedite identification of emerging variants is critical to supporting public health.

Article activity feed

  1. SciScore for 10.1101/2022.04.18.22273989: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Samples tested via the ThermoFisher TaqPath™ COVID-19 Combo Kit are positive if the fluorescent signal is detected above threshold in two out of three gene targets (10).
    ThermoFisher TaqPath™
    suggested: None

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.