Artificial intelligence tool for the study of COVID-19 microdroplet spread across the human diameter and airborne space
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
The 2019 novel coronavirus (SARS-CoV-2 / COVID-19), with a point of origin in Wuhan, China, has spread rapidly all over the world. It turned into a raging pandemic wrecking havoc on health care facilities, world economy and affecting everyone’s life to date. With every new variant, rate of transmission, spread of infections and the number of cases continues to rise at an international level and scale. There are limited reliable researches that study microdroplets spread and transmissions from human sneeze or cough in the airborne space. In this paper, we propose an intelligent technique to visualize, detect, measure the distance of spread in a real-world settings of microdroplet transmissions in airborne space, called “COVNET45”. In this paper, we investigate the microdroplet transmission and validate the measurements accuracy compared to published researches, by examining several microscopic and visual images taken to investigate the novel coronavirus (SARS-CoV-2 / COVID-19). The ultimate contribution is to calculate the spread of the microdroplets, measure it precisely and provide a graphical presentation. Additionally, the work employs machine learning and five algorithms for image optimization, detection and measurement.
Article activity feed
-
-
SciScore for 10.1101/2022.06.01.22275872: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank…
SciScore for 10.1101/2022.06.01.22275872: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-