Feasibility and lessons learned on remote trial implementation from TestBoston, a fully remote, longitudinal, large-scale COVID-19 surveillance study

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Longitudinal clinical studies traditionally require in-person study visits which are well documented to pose barriers to participation and contribute challenges to enrolling representative samples. Remote trial models may reduce barriers to research engagement, improve retention, and reach a more representative cohort. As remote trials become more common following the COVID-19 pandemic, a critical evaluation of this approach is imperative to optimize this paradigm shift in research. The TestBoston study was launched to understand prevalence and risk factors for COVID-19 infection in the greater Boston area through a fully remote home-testing model. Participants (adults, within 45 miles of Boston, MA) were recruited remotely from patient registries at Brigham and Women’s Hospital and the general public. Participants were provided with monthly and “on-demand” at-home SARS-CoV-2 RT-PCR and antibody testing using nasal swab and dried blood spot self-collection kits and electronic surveys to assess symptoms and risk factors for COVID-19 via an online dashboard. Between October 2020 and January 2021, we enrolled 10,289 participants reflective of Massachusetts census data. Mean age was 47 years (range 18–93), 5855 (56.9%) were assigned female sex at birth, 7181(69.8%) reported being White non-Hispanic, 952 (9.3%) Hispanic/Latinx, 925 (9.0%) Black, 889 (8.6%) Asian, and 342 (3.3%) other and/or more than one race. Lower initial enrollment among Black and Hispanic/Latinx individuals required an adaptive approach to recruitment, leveraging connections to the medical system, coupled with community partnerships to ensure a representative cohort. Longitudinal retention was higher among participants who were White non-Hispanic, older, working remotely, and with lower socioeconomic vulnerability. Implementation highlighted key differences in remote trial models as participants independently navigate study milestones, requiring a dedicated participant support team and robust technology platforms, to reduce barriers to enrollment, promote retention, and ensure scientific rigor and data quality. Remote clinical trial models offer tremendous potential to engage representative cohorts, scale biomedical research, and promote accessibility by reducing barriers common in traditional trial design. Barriers and burdens within remote trials may be experienced disproportionately across demographic groups. To maximize engagement and retention, researchers should prioritize intensive participant support, investment in technologic infrastructure and an adaptive approach to maximize engagement and retention.

Article activity feed

  1. SciScore for 10.1101/2021.10.28.21265624: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    EthicsConsent: Eligible individuals received an invitation letter containing a one-time code and instructions to visit the online study portal, enter the code, create an account, read and sign an online informed consent, input their mailing address, and respond to a brief demographic survey (33).
    IRB: Ethical considerations: This study was approved by the MGB Institutional Review Board.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Cell Line AuthenticationAuthentication: Pepper provides Application Programming Interfaces (APIs) and user interfaces for participants, study team and logistical partners, utilizes 3rd party services, such as Auth0 for user authentication and authorization, SendGrid to distribute email communications to participants, and abides by all HIPAA security and breach rules.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Data from Pepper was imported and supplemented with data from MGB medical records and stored in REDCap (Research Electronic Data Capture), a secure, web-based software platform designed to support data capture for research studies, hosted by MGB (36,37).
    Pepper
    suggested: (PEPPER, RRID:SCR_000431)
    REDCap
    suggested: (REDCap, RRID:SCR_003445)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.