The influence of gender on COVID-19 infections and mortality in Germany: Insights from age- and gender-specific modeling of contact rates, infections, and deaths in the early phase of the pandemic

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Recent research points towards age- and gender-specific transmission of COVID-19 infections and their outcomes. The effect of gender, however, has been overlooked in past modelling approaches of COVID-19 infections. The aim of our study is to explore how gender-specific contact behavior affects gender-specific COVID-19 infections and deaths. We consider a compartment model to establish short-term forecasts of the COVID-19 epidemic over a time period of 75 days. Compartments are subdivided into different age groups and genders, and estimated contact patterns, based on previous studies, are incorporated to account for age- and gender-specific social behaviour. The model is fitted to real data and used for assessing the effect of hypothetical contact scenarios all starting at a daily level of 10 new infections per million population. On day 75 after the end of the lockdown, infection rates are highest among the young and working-age, but they also have increased among the old. Sex ratios reveal higher infection risks among women than men at working ages; the opposite holds true at old age. Death rates in all age groups are twice as high for men as for women. Small changes in contact rates at working and young ages have a considerable effect on infections and mortality at old age, with elderly men being always at higher risk of infection and mortality. Our results underline the high importance of the non-pharmaceutical mitigation measures (NPMM) in low-infection phases of the pandemic to prevent that an increase in contact rates leads to higher mortality among the elderly, even if easing measures take place among the young. At young and middle ages, women’s contribution to increasing infections is higher due to their higher number of contacts. Gender differences in contact rates may be one pathway that contributes to the spread of the disease and results in gender-specific infection rates and their mortality outcome. To further explore possible pathways, more data on contact behavior and COVID-19 transmission is needed, which includes gender- and socio-demographic information.

Article activity feed

  1. SciScore for 10.1101/2020.10.06.20207951: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.