Current forecast of COVID-19 in Mexico: A Bayesian and machine learning approaches

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The COVID-19 pandemic has been widely spread and affected millions of people and caused hundreds of deaths worldwide, especially in patients with comorbilities and COVID-19. This manuscript aims to present models to predict, firstly, the number of coronavirus cases and secondly, the hospital care demand and mortality based on COVID-19 patients who have been diagnosed with other diseases. For the first part, I present a projection of the spread of coronavirus in Mexico, which is based on a contact tracing model using Bayesian inference. I investigate the health profile of individuals diagnosed with coronavirus to predict their type of patient care (inpatient or outpatient) and survival. Specifically, I analyze the comorbidity associated with coronavirus using Machine Learning. I have implemented two classifiers: I use the first classifier to predict the type of care procedure that a person diagnosed with coronavirus presenting chronic diseases will obtain (i.e. outpatient or hospitalised), in this way I estimate the hospital care demand; I use the second classifier to predict the survival or mortality of the patient (i.e. survived or deceased). I present two techniques to deal with these kinds of unbalanced datasets related to outpatient/hospitalised and survived/deceased cases (which occur in general for these types of coronavirus datasets) to obtain a better performance for the classification.

Article activity feed

  1. SciScore for 10.1101/2020.12.11.20231829: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.