Community structured model for vaccine strategies to control COVID19 spread: A mathematical study

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Initial efforts to mitigate the COVID-19 pandemic have relied heavily on non-pharmaceutical interventions ( NPIs ), including physical distancing, hand hygiene, and mask-wearing. However, an effective vaccine is essential to containing the spread of the virus. We developed a compartmental model to examine different vaccine strategies for controlling the spread of COVID-19. Our framework accounts for testing rates, test-turnaround times, and vaccination waning immunity. Using reported case data from the city of Toronto, Canada between Mar-Dec, 2020 we defined epidemic phases of infection using contact rates as well as the probability of transmission upon contact. We investigated the impact of vaccine distribution by comparing different permutations of waning immunity, vaccine coverage and efficacy throughout various stages of NPI’s relaxation in terms of cases and deaths. The basic reproduction number is also studied. We observed that widespread vaccine coverage substantially reduced the number of cases and deaths. Under phases with high transmission, an early or late reopening will result in new resurgence of the infection, even with the highest coverage. On the other hand, under phases with lower transmission, 60% of coverage is enough to prevent new infections. Our analysis of R 0 showed that the basic reproduction number is reduced by decreasing the tests turnaround time and transmission in the household. While we found that household transmission can decrease following the introduction of a vaccine, public health efforts to reduce test turnaround times remain important for virus containment.

Article activity feed

  1. SciScore for 10.1101/2021.01.25.21250505: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.