Topological data analysis model for the spread of the coronavirus

This article has been Reviewed by the following groups

Read the full article

Abstract

We apply topological data analysis, specifically the Mapper algorithm, to the U.S. COVID-19 data. The resulting Mapper graphs provide visualizations of the pandemic that are more complete than those supplied by other, more standard methods. They allow for easy comparisons of the features of the pandemic across time and space and encode a variety of geometric features of the data cloud created from geographic information, time progression, and the number of COVID-19 cases. The Mapper graphs reflect the development of the pandemic across all of the U.S. and capture the growth rates as well as the regional prominence of hot-spots.

Article activity feed

  1. SciScore for 10.1101/2020.08.13.20174326: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    There are various free technical implementations of the Mapper algorithm, such as Python Mapper [9], TDAmapper (ℝ package) [12], and Kepler Mapper (which we use in this paper) [16]. 2.2.
    Python
    suggested: (IPython, RRID:SCR_001658)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.