Analysis of the specificity of a COVID-19 antigen test in the Slovak mass testing program

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Mass antigen testing programs have been challenged because of an alleged insufficient specificity, leading to a large number of false positives. The objective of this study is to derive a lower bound of the specificity of the SD Biosensor Standard Q Ag-Test in large scale practical use.

Methods

Based on county data from the nationwide tests for SARS-CoV-2 in Slovakia between 31.10.–1.11. 2020 we calculate a lower confidence bound for the specificity. As positive test results were not systematically verified by PCR tests, we base the lower bound on a worst case assumption, assuming all positives to be false positives.

Results

3,625,332 persons from 79 counties were tested. The lowest positivity rate was observed in the county of Rožňava where 100 out of 34307 (0.29%) tests were positive. This implies a test specificity of at least 99.6% (97.5% one-sided lower confidence bound, adjusted for multiplicity).

Conclusion

The obtained lower bound suggests a higher specificity compared to earlier studies in spite of the underlying worst case assumption and the application in a mass testing setting. The actual specificity is expected to exceed 99.6% if the prevalence in the respective regions was non-negligible at the time of testing. To our knowledge, this estimate constitutes the first bound obtained from large scale practical use of an antigen test.

Article activity feed

  1. SciScore for 10.1101/2020.12.08.20246090: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.