Characterizing two outbreak waves of COVID-19 in Spain using phenomenological epidemic modelling

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Since the first case reported of SARS-CoV-2 the end of December 2019 in China, the number of cases quickly climbed following an exponential growth trend, demonstrating that a global pandemic is possible. As of December 3, 2020, the total number of cases reported are around 65,527,000 contagions worldwide, and 1,524,000 deaths affecting 218 countries and territories. In this scenario, Spain is one of the countries that has suffered in a hard way, the ongoing epidemic caused by the novel coronavirus SARS-CoV-2, namely COVID-19 disease. In this paper, we present the utilization of phenomenological epidemic models to characterize the two first outbreak waves of COVID-19 in Spain. The study is driven using a two-step phenomenological epidemic approach. First, we use a simple generalized growth model to fit the main parameters at the early epidemic phase; later, we apply our previous finding over a logistic growth model to that characterize both waves completely. The results show that even in the absence of accurate data series, it is possible to characterize the curves of case incidence, and construct a short-term forecast of 60 days in the near time horizon, in relation to the expected total duration of the pandemic.

Article activity feed

  1. SciScore for 10.1101/2020.12.29.20247833: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.