Determinants of in-hospital mortality in COVID-19; a prospective cohort study from Pakistan

This article has been Reviewed by the following groups

Read the full article

Abstract

A prospective cohort study was conducted at the Indus Hospital Karachi, Pakistan between March and June 2020 to estimate the in-hospital mortality among hospitalized COVID-19 patients and its determinants. A total of 170 adult patients were enrolled and all-cause mortality was found to be 39% (67/170). Most non-survivors were above 60 years of age (64%) while gender distribution was quite similar in both groups (males: 77% vs 78%). Most (80.6%) non-survivors came with peripheral oxygen saturation less than 93% while 95% of them had critical disease on arrival. Use of non-invasive ventilation in emergency room was higher among non-survivors (56.7%) versus survivors (26.2%). Median Interleukin-6 levels were higher among non-survivors (78.6: IQR = 33.8–49.0) compared to survivors (21.8: IQR = 12.6–36.3). Most patients in the non-survivor group (86.6%) required invasive ventilator support during hospital stay compared to 7.8% in the survivors. The median duration of ICU stay was longer for non-survivors (9: IQR = 6–12) compared to survivors (5: IQR = 3–7) days. Univariable binary logistic regression showed that age above 60 years, oxygen saturation below 93%, Neutrophil to lymphocyte ratio above 5, procalcitonin above 2ng/ml, unit increase in SOFA score and arterial lactate levels were associated with mortality. We also found that a unit decrease in Pao2/FiO2 ratio and serum albumin were associated with mortality in our patients. Multivariable regression showed that age above 60 years (aOR = 3.4: 95% CI = 1.6–6.9), peripheral oxygen saturation below 93% (aOR = 3.5:95% CI = 1.6–7.7) and serum pro-calcitonin above 2ng/ml (aOR = 4.8; 95% CI = 1.9–12.2) were associated with higher odds of mortality when adjusted by month of admission. Most common cause of death was multisystem organ failure in 35 (56.6%) non-survivors while 22 (35.5%) died due to respiratory failure. Larger prospective studies are needed to further strengthen these findings.

Article activity feed

  1. SciScore for 10.1101/2020.12.28.20248920: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Data was recorded on a REDCap database and analyzed on Stata14.
    REDCap
    suggested: (REDCap, RRID:SCR_003445)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Despite the limitations of a small sample we were able to detect many predictors of mortality. The study is limited by data from a single-center with critically ill COVID-19 patients which may introduce a selection bias and inflate the mortality. Hence, results from this study may help in the risk stratification and management of similar critically ill patients only. The sample size is limited because of the number of beds available at the unit during the first wave. We plan to add more numbers in future as we are currently seeing the second wave. A larger multi-center cohort study from various hospitals of the country would help to further validate the findings of our study.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.