Mathematical model for the mitigation of the economic effects of the Covid-19 in the Democratic Republic of the Congo

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Since the apparition of the SRAS-Cov-2 in Wuhan in China, several countries have set diverse measures to stop its spread. Measures envisaged include national or local lockdown and travels ban. In the DRC, these measures have seriously prejudiced the economy of the country which is mainly informal. In this paper, a mathematical model for the spread of Covid-19 in Democratic Republic of Congo (DRC) taking into account the vulnerability of congolese economy is proposed. To mitigate the spreading of the virus no national lockdown is proposed, only individuals affected by the virus or suspicious are quarantined. The reproduction number for the Covid-19 is calculated and numerical simulations are performed using Python software. A clear advice for policymakers is deduced from the forecasting of the model.

Article activity feed

  1. SciScore for 10.1101/2020.12.14.20248182: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.