Estimation of the case fatality rate based on stratification for the COVID-19 outbreak

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

This work is motivated by the recent worldwide pandemic of the novel coronavirus disease (COVID-19). When an epidemiological disease is prevalent, estimating the case fatality rate, the proportion of deaths out of the total cases, accurately and quickly is important as the case fatality rate is one of the crucial indicators of the risk of a disease. In this work, we propose an alternative estimator of the case fatality rate that provides more accurate estimate during an outbreak by reducing the downward bias (underestimation) of the naive CFR, the proportion of deaths out of confirmed cases at each time point, which is the most commonly used estimator due to the simplicity. The proposed estimator is designed to achieve the availability of real-time update by using the commonly reported quantities, the numbers of confirmed, cured, deceased cases, in the computation. To enhance the accuracy, the proposed estimator adapts a stratification, which allows the estimator to use information from heterogeneous strata separately. By the COVID-19 cases of China, South Korea and the United States, we numerically show the proposed stratification-based estimator plays a role of providing an early warning about the severity of a epidemiological disease that estimates the final case fatality rate accurately and shows faster convergence to the final case fatality rate.

Article activity feed

  1. SciScore for 10.1101/2020.05.23.20111484: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.