Comparing the fit of N95, KN95, surgical, and cloth face masks and assessing the accuracy of fit checking

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The COVID-19 pandemic has made well-fitting face masks a critical piece of protective equipment for healthcare workers and civilians. While the importance of wearing face masks has been acknowledged, there remains a lack of understanding about the role of good fit in rendering protective equipment useful. In addition, supply chain constraints have caused some organizations to abandon traditional quantitative or/and qualitative fit testing, and instead, have implemented subjective fit checking. Our study seeks to quantitatively evaluate the level of fit offered by various types of masks, and most importantly, assess the accuracy of implementing fit checks by comparing fit check results to quantitative fit testing results.

Methods

Seven participants first evaluated N95 and KN95 respirators by performing a fit check. Participants then underwent quantitative fit testing wearing five N95 respirators, a KN95 respirator, a surgical mask, and fabric masks.

Results

N95 respirators offered higher degrees of protection than the other categories of masks tested; however, it should be noted that most N95 respirators failed to fit the participants adequately. Fit check responses had poor correlation with quantitative fit factor scores. KN95, surgical, and fabric masks achieved low fit factor scores, with little protective difference recorded between respiratory protection options. In addition, small facial differences were observed to have a significant impact on quantitative fit.

Conclusion

Fit is critical to the level of protection offered by respirators. For an N95 respirator to provide the promised protection, it must fit the participant. Performing a fit check via NHS self-assessment guidelines was an unreliable way of determining fit.

Article activity feed

  1. SciScore for 10.1101/2020.08.17.20176735: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Strengths and Limitations: Due to the lengthy nature of qualitative fit testing and the age of some participants, most participants underwent the tests while seated. We do not expect this to have had an impact on the testing results as all NIOSH qualitative fit testing activities were followed except the change from standing to seated. Two participants, M-51 and M-29, had some degree of facial stubble or hair which may have affected fit and the ability to sense air movement. Participants successfully represented a range of ages and prior experience wearing masks. Three participants had experience working in healthcare related fields, one participant had experience in an industry which can require the wearing of respirators and the remaining three participants did not have any relevant prior experience. Our results were generally concordant within our sample population; however, further studies with larger sample sizes would be necessary to offer definitive conclusions.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.