Modeling the relative risk of SARS-CoV-2 infection to inform risk-cost-benefit analyses of activities during the SARS-CoV-2 pandemic

This article has been Reviewed by the following groups

Read the full article

Abstract

Risk-cost-benefit analysis requires the enumeration of decision alternatives, their associated outcomes, and the quantification of uncertainty. Public and private decision-making surrounding the COVID-19 pandemic must contend with uncertainty about the probability of infection during activities involving groups of people, in order to decide whether that activity is worth undertaking. We propose a model of SARS-CoV-2 infection probability that can produce estimates of relative risk of infection for diverse activities, so long as those activities meet a list of assumptions, including that they do not last longer than one day (e.g., sporting events, flights, concerts), and that the probability of infection among possible routes of infection (i.e., droplet, aerosol, fomite, and direct contact) are independent. We show how the model can be used to inform decisions facing governments and industry, such as opening stadiums or flying on airplanes; in particular, it allows for estimating the ranking of the constituent components of activities (e.g., going through a turnstile, sitting in one’s seat) by their relative risk of infection, even when the probability of infection is unknown or uncertain. We prove that the model is a good approximation of a more refined model in which we assume infections come from a series of independent risks. A linearity assumption governing several potentially modifiable risks factors—such as duration of the activity, density of participants, and infectiousness of the attendees—makes interpreting and using the model straightforward, and we argue that it does so without significantly diminishing the reliability of the model.

Article activity feed

  1. SciScore for 10.1101/2020.08.23.20180349: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    4.1 Limitations: Like any model, the model described here depends on its assumptions. In our view, the most problematic assumptions are A2 and A6, which require independence. That could fail, if, for example, infection requires a certain minimum threshold of exposure. Similarly, A7, the assumption that those in one’s household pose no threat, could be problematic. It is probably true during the activity; however, the presence of family members could increase the risk of exposure after the activity when one returns home, given, e.g., their separate trips to the washroom or through the turnstile during the activity. The importance of these extra exposures is an empirical question, and a function of the relative risk of those sub-activities done individually, and protective actions taken after the event (e.g., social distancing, hand-hygiene, proactive testing etc.). More importantly, the model assumes that the risk of infection is a function of the background risk in the population of the activity’s jurisdiction. However, that assumes the subpopulation of potential participants does not have more virus prevalence than the community at large. Whether that is true is also an empirical question. For example, are those who would choose to attend a stadium concert during a pandemic more or less likely to participate in protective actions that lower their overall risk of virus infection or of virus transmission? Part of the empirical study of the public’s risk perceptions would need ...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.