The use of health geography modeling to understand early dispersion of COVID-19 in São Paulo, Brazil

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Public health policies to contain the spread of COVID-19 rely mainly on non-pharmacological measures. Those measures, especially social distancing, are a challenge for developing countries, such as Brazil. In São Paulo, the most populous state in Brazil (45 million inhabitants), most COVID-19 cases up to April 18th were reported in the Capital and metropolitan area. However, the inner municipalities, where 20 million people live, are also at risk. As governmental authorities discuss the loosening of measures for restricting population mobility, it is urgent to analyze the routes of dispersion of COVID-19 in São Paulo territory. We hypothesize that urban hierarchy is the main responsible for the disease spreading, and we identify the hotspots and the main routes of virus movement from the metropolis to the inner state. In this ecological study, we use geographic models of population mobility to check for patterns for the spread of SARS-CoV-2 infection. We identify two patterns based on surveillance data: one by contiguous diffusion from the capital metropolitan area, and the other hierarchical with long-distance spread through major highways that connects São Paulo city with cities of regional relevance. This knowledge can provide real-time responses to support public health strategies, optimizing the use of resources in order to minimize disease impact on population and economy.

Article activity feed

  1. SciScore for 10.1101/2020.04.26.20080895: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Though our research has the limitations inherent to the ecological study design [11], our predictions of routes and risks of COVID-19 in inner São Paulo State (Fig 2) have been thus far validated by surveillance data (Fig 3). Given the extensive mobility between smaller municipalities and those cities with regional economic relevance [11], it is reasonable to infer that the regional spread of SARS-Cov-2 infections depends on the success of non-pharmacological strategies applied in the latter. São Paulo State distancing measures started on March 22nd and is presently under heavy pressure from several sectors of industry and trading companies. As the local government hints at the possibility of loosening restrictive measures, it is urgent to provide a way of protecting the population health. We also state that similar methodological approaches can direct public health strategies in other developing countries, especially those that either have great territorial extension and/or have diverse patterns of urbanization and mobility.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.