Initial estimates of COVID-19 infections in hospital workers in the United States during the first wave of pandemic

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

We estimated the number of hospital workers in the United States (US) that might be infected or die during the COVID-19 pandemic based on the data in the early phases of the pandemic.

Methods

We calculated infection and death rates amongst US hospital workers per 100 COVID-19-related deaths in the general population based on observed numbers in Hubei, China, and Italy. We used Monte Carlo simulations to compute point estimates with 95% confidence intervals for hospital worker (HW) infections in the US based on each of these two scenarios. We also assessed the impact of restricting hospital workers aged ≥ 60 years from performing patient care activities on these estimates.

Results

We estimated that about 53,000 hospital workers in the US could get infected, and 1579 could die due to COVID19. The availability of PPE for high-risk workers alone could reduce this number to about 28,000 infections and 850 deaths. Restricting high-risk hospital workers such as those aged ≥ 60 years from direct patient care could reduce counts to 2,000 healthcare worker infections and 60 deaths.

Conclusion

We estimate that US hospital workers will bear a significant burden of illness due to COVID-19. Making PPE available to all hospital workers and reducing the exposure of hospital workers above the age of 60 could mitigate these risks.

Article activity feed

  1. SciScore for 10.1101/2020.04.06.20055988: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.