Computational simulation to assess patient safety of uncompensated COVID-19 two-patient ventilator sharing using the Pulse Physiology Engine

This article has been Reviewed by the following groups

Read the full article

Abstract

The COVID-19 pandemic is stretching medical resources internationally, sometimes creating ventilator shortages that complicate clinical and ethical situations. The possibility of needing to ventilate multiple patients with a single ventilator raises patient health and safety concerns in addition to clinical conditions needing treatment. Wherever ventilators are employed, additional tubing and splitting adaptors may be available. Adjustable flow-compensating resistance for differences in lung compliance on individual limbs may not be readily implementable. By exploring a number and range of possible contributing factors using computational simulation without risk of patient harm, this paper attempts to define useful bounds for ventilation parameters when compensatory resistance in limbs of a shared breathing circuit is not possible. This desperate approach to shared ventilation support would be a last resort when alternatives have been exhausted.

Methods

A whole-body computational physiology model (using lumped parameters) was used to simulate each patient being ventilated. The primary model of a single patient with a dedicated ventilator was augmented to model two patients sharing a single ventilator. In addition to lung mechanics or estimation of CO 2 and pH expected for set ventilation parameters (considerations of lung physiology alone), full physiological simulation provides estimates of additional values for oxyhemoglobin saturation, arterial oxygen tension, and other patient parameters. A range of ventilator settings and patient characteristics were simulated for paired patients.

Findings

To be useful for clinicians, attention has been directed to clinically available parameters. These simulations show patient outcome during multi-patient ventilation is most closely correlated to lung compliance, oxygenation index, oxygen saturation index, and end-tidal carbon dioxide of individual patients. The simulated patient outcome metrics were satisfactory when the lung compliance difference between two patients was less than 12 mL/cmH 2 O, and the oxygen saturation index difference was less than 2 mmHg.

Interpretation

In resource-limited regions of the world, the COVID-19 pandemic will result in equipment shortages. While single-patient ventilation is preferable, if that option is unavailable and ventilator sharing using limbs without flow resistance compensation is the only available alternative, these simulations provide a conceptual framework and guidelines for clinical patient selection.

Article activity feed

  1. SciScore for 10.1101/2020.05.19.20107201: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    An obvious limitation of this conclusion is that this is a pure simulation study, and we do not have correlated patient data. Planned future work includes comparing our computational simulations to physical experiments using the simple lung simulators with discrete selectable settings for resistance, compliance, and effects of negative inspiratory pressure patient-initiated breath triggers [IngMar Medical, QuickLung® Adult Precision Test Lung with QuickTrigger, part number 15 00 100, www.ingmarmed.com]. Parameters of this simulation model were chosen to match nominal QuickLung® parameters to facilitate future bench testing. Clinical validationmay never be possible, would likely be observational at best, and is very unlikely to undergo ethical randomized clinical trial. This is a value of simulation, that possibilities can be explored that are beyond the realm of clinical investigation, yet of clinical value. Implementation of split breathing circuits without compensating resistances was the specific model addressed in the joint statement by professional societies recommending against this practice [13]. Various means have been employed empirically to limit flow to the most compliant lungs [19-23]. Modeling flow restriction adds model parameters, greatly increasing the number of simulations needed. For those locales with the most rudimentary resources, flow restriction devices may not be possible. Future work will also investigate sharing ventilators by more than two patients,...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.