Monitoring life expectancy levels during the COVID-19 pandemic: Example of the unequal impact of the first wave on Spanish regions

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

To provide an interpretable summary of the impact on mortality of the COVID-19 pandemic we estimate weekly and annual life expectancies at birth in Spain and its regions.

Methods

We used daily death count data from the Spanish Daily Mortality Monitoring System (MoMo), and death counts from 2018, and population on July 1st, 2019 by region (CCAA), age groups, and sex from the Spanish National Statistics Institute. We estimated weekly and annual (2019 and 2020*, the shifted annual calendar period up to 5 July 2020) life expectancies at birth as well as their differences with respect to 2019.

Results

Weekly life expectancies at birth in Spain were lower in weeks 11–20, 2020 compared to the same weeks in 2019. This drop in weekly life expectancy was especially strong in weeks 13 and 14 (March 23 rd to April 5 th ), with national declines ranging between 6.1 and 7.6 years and maximum regional weekly declines of up to 15 years in Madrid. Annual life expectancy differences between 2019 and 2020 also reflected an overall drop in annual life expectancy of 0.9 years for both men and women. These drops ranged between 0 years in several regions (e.g. Canary and Balearic Islands) to 2.8 years among men in Madrid.

Conclusions

Life expectancy is an easy to interpret measure for understanding the heterogeneity of mortality patterns across Spanish regions. Weekly and annual life expectancy are sensitive and useful indicators for understanding disparities and communicating the gravity of the situation because differences are expressed in intuitive year units.

Article activity feed

  1. SciScore for 10.1101/2020.06.03.20120972: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.