Pandemic-associated mobility restrictions could cause increases in dengue virus transmission

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The COVID-19 pandemic has induced unprecedented reductions in human mobility and social contacts throughout the world. Because dengue virus (DENV) transmission is strongly driven by human mobility, behavioral changes associated with the pandemic have been hypothesized to impact dengue incidence. By discouraging human contact, COVID-19 control measures have also disrupted dengue vector control interventions, the most effective of which require entry into homes. We sought to investigate how and why dengue incidence could differ under a lockdown scenario with a proportion of the population sheltered at home.

Methodology & principal findings

We used an agent-based model with a realistic treatment of human mobility and vector control. We found that a lockdown in which 70% of the population sheltered at home and which occurred in a season when a new serotype invaded could lead to a small average increase in cumulative DENV infections of up to 10%, depending on the time of year lockdown occurred. Lockdown had a more pronounced effect on the spatial distribution of DENV infections, with higher incidence under lockdown in regions with higher mosquito abundance. Transmission was also more focused in homes following lockdown. The proportion of people infected in their own home rose from 54% under normal conditions to 66% under lockdown, and the household secondary attack rate rose from 0.109 to 0.128, a 17% increase. When we considered that lockdown measures could disrupt regular, city-wide vector control campaigns, the increase in incidence was more pronounced than with lockdown alone, especially if lockdown occurred at the optimal time for vector control.

Conclusions & significance

Our results indicate that an unintended outcome of lockdown measures may be to adversely alter the epidemiology of dengue. This observation has important implications for an improved understanding of dengue epidemiology and effective application of dengue vector control. When coordinating public health responses during a syndemic, it is important to monitor multiple infections and understand that an intervention against one disease may exacerbate another.

Article activity feed

  1. SciScore for 10.1101/2020.11.17.20210211: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Our study also has at least three limitations. First, it is difficult to know the exact response people made to lockdown measures, such as the level of compliance and how the nature of their movements changed. Our sensitivity analysis of lockdown compliance and duration found that reduced compliance linearly decreased the change in incidence due to lockdown. Second, we assumed that mosquito behavior was unaffected by changes in human mobility. It has been suggested that there may be an increase in larval habitats due to lockdown measures; e.g., if unattended workplaces means that larval development sites increase (53). Third, we did not assess impact in terms of severe disease; e.g., dengue hemorrhagic fever (DHF). We made this decision because of severe dengue’s dependence on the local immunity profile and circulating serotype, which would mean DHF results would be difficult to generalize. Our model was also calibrated to a statistical reconstruction of incidence of infection (26) rather than disease. Nonetheless, increased incidence of DENV infection would, all else being equal, be expected to translate to higher rates of DHF; a very concerning situation in the context of already strained health systems due to COVID-19. Our findings illustrate why, during a syndemic, public health officials must consider the implications of an action to prevent one disease on other concurrent diseases (54). Thus, a holistic approach to infectious disease mitigation is needed. Research and p...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.