Spatial analysis of COVID-19 spread in Iran: Insights into geographical and structural transmission determinants at a province level

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The Islamic Republic of Iran reported its first COVID-19 cases by 19 th February 2020, since then it has become one of the most affected countries, with more than 73,000 cases and 4,585 deaths to this date. Spatial modeling could be used to approach an understanding of structural and sociodemographic factors that have impacted COVID-19 spread at a province-level in Iran. Therefore, in the present paper, we developed a spatial statistical approach to describe how COVID-19 cases are spatially distributed and to identify significant spatial clusters of cases and how socioeconomic and climatic features of Iranian provinces might predict the number of cases. The analyses are applied to cumulative cases of the disease from February 19 th to March 18 th . They correspond to obtaining maps associated with quartiles for rates of COVID-19 cases smoothed through a Bayesian technique and relative risks, the calculation of global (Moran’s I) and local indicators of spatial autocorrelation (LISA), both univariate and bivariate, to derive significant clustering, and the fit of a multivariate spatial lag model considering a set of variables potentially affecting the presence of the disease. We identified a cluster of provinces with significantly higher rates of COVID-19 cases around Tehran (p-value< 0.05), indicating that the COVID-19 spread within Iran was spatially correlated. Urbanized, highly connected provinces with older population structures and higher average temperatures were the most susceptible to present a higher number of COVID-19 cases (p-value < 0.05). Interestingly, literacy is a factor that is associated with a decrease in the number of cases (p-value < 0.05), which might be directly related to health literacy and compliance with public health measures. These features indicate that social distancing, protecting older adults, and vulnerable populations, as well as promoting health literacy, might be useful to reduce SARS-CoV-2 spread in Iran. One limitation of our analysis is that the most updated information we found concerning socioeconomic and climatic features is not for 2020, or even for a same year, so that the obtained associations should be interpreted with caution. Our approach could be applied to model COVID-19 outbreaks in other countries with similar characteristics or in case of an upturn in COVID-19 within Iran.

Article activity feed

  1. SciScore for 10.1101/2020.04.19.20071605: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    All statistical analyses were conducted using GeoDa version 1.14.0.
    GeoDa
    suggested: (GeoDa, RRID:SCR_018559)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Concerning average temperature levels, we were able to obtain information associated only with the capitals and not the provinces, being a limitation of the analyzed information, obtaining some inconclusive results. On one hand, the global spatial autocorrelation was negative, though not statistically significant, indicating that global areas with higher temperatures are spatially related to areas with lower disease rates. On the other hand, on the spatial linear model, we derived that more temperature is associated with more cases. However; the former result does not contradict the latter since the direct effect in each province of a variable over the response is different from the spatial relationship between two variables. The latter considers one of the variables as spatially lagged (COVID-19), and thus the direct effect between variables in the same province is not included. In fact, this problem occurs in all the bivariate analysis, so care should be taken in all the interpretations. Notably, our results are consistent with previous analyses which have analyzed the impact of climate on SARS-CoV-2 stability and spread (44). However, these results should be further studied considering the climate data limitations, that we obtained mixed results, and that some studies suggest there is no evidence that spread rates of the disease decline with higher temperatures (45). Our study had some strengths and limitations. We approached COVID-19 using spatial analysis, which allowed ...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.