Excess years of life lost to COVID-19 and other causes of death by sex, neighbourhood deprivation, and region in England and Wales during 2020: A registry-based study

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Deaths in the first year of the Coronavirus Disease 2019 (COVID-19) pandemic in England and Wales were unevenly distributed socioeconomically and geographically. However, the full scale of inequalities may have been underestimated to date, as most measures of excess mortality do not adequately account for varying age profiles of deaths between social groups. We measured years of life lost (YLL) attributable to the pandemic, directly or indirectly, comparing mortality across geographic and socioeconomic groups.

Methods and findings

We used national mortality registers in England and Wales, from 27 December 2014 until 25 December 2020, covering 3,265,937 deaths. YLLs (main outcome) were calculated using 2019 single year sex-specific life tables for England and Wales. Interrupted time-series analyses, with panel time-series models, were used to estimate expected YLL by sex, geographical region, and deprivation quintile between 7 March 2020 and 25 December 2020 by cause: direct deaths (COVID-19 and other respiratory diseases), cardiovascular disease and diabetes, cancer, and other indirect deaths (all other causes). Excess YLL during the pandemic period were calculated by subtracting observed from expected values. Additional analyses focused on excess deaths for region and deprivation strata, by age-group. Between 7 March 2020 and 25 December 2020, there were an estimated 763,550 (95% CI: 696,826 to 830,273) excess YLL in England and Wales, equivalent to a 15% (95% CI: 14 to 16) increase in YLL compared to the equivalent time period in 2019. There was a strong deprivation gradient in all-cause excess YLL, with rates per 100,000 population ranging from 916 (95% CI: 820 to 1,012) for the least deprived quintile to 1,645 (95% CI: 1,472 to 1,819) for the most deprived. The differences in excess YLL between deprivation quintiles were greatest in younger age groups; for all-cause deaths, a mean of 9.1 years per death (95% CI: 8.2 to 10.0) were lost in the least deprived quintile, compared to 10.8 (95% CI: 10.0 to 11.6) in the most deprived; for COVID-19 and other respiratory deaths, a mean of 8.9 years per death (95% CI: 8.7 to 9.1) were lost in the least deprived quintile, compared to 11.2 (95% CI: 11.0 to 11.5) in the most deprived. For all-cause mortality, estimated deaths in the most deprived compared to the most affluent areas were much higher in younger age groups, but similar for those aged 85 or over. There was marked variability in both all-cause and direct excess YLL by region, with the highest rates in the North West. Limitations include the quasi-experimental nature of the research design and the requirement for accurate and timely recording.

Conclusions

In this study, we observed strong socioeconomic and geographical health inequalities in YLL, during the first calendar year of the COVID-19 pandemic. These were in line with long-standing existing inequalities in England and Wales, with the most deprived areas reporting the largest numbers in potential YLL.

Article activity feed

  1. SciScore for 10.1101/2021.07.05.21259786: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Strengths and Limitations: Our analysis provides a comprehensive picture of excess years of life lost during the first 42 weeks of pandemic, including major causes both related and unrelated to COVID-19 infection. This enabled us to estimate the total impact of the pandemic on years of life lost, including regional and area-level socioeconomic patterns. There are some limitations to our study. For deaths not referred for investigation and adjudication by a coroner, data on cause of death rely on accurate diagnosis and recording by clinicians. During a pandemic, assessing the contribution of COVID-19 to some deaths can be challenging.21 We defined COVID-19 deaths as those for which the underlying cause was attributed to the virus on the death certificate. Inevitably, there will have been some misclassification, particularly in the early part of the pandemic when COVID-19 testing was not widespread and doctors’ awareness may have been more limited.22,23 This is also problematic for estimating years of life lost by deaths caused indirectly by the pandemic, so in addition to excluding COVID-19 deaths from the total excess deaths, we also excluded other respiratory causes of death (the most likely source of ‘missed’ COVID-19 diagnoses). Furthermore, this approach enabled us to apply data from earlier years to create a reference ‘baseline’, in the absence of COVID-19 deaths occurring before 2020. Consequently, our estimates of excess years of life lost that occurred as an indirect ...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.